Fit a Bayesian nonparametric factorial ANOVA model with Gaussian kernel
anova_bnp_normal.Rd
Fit a Bayesian nonparametric factorial ANOVA model with Gaussian kernel
Arguments
- y
a continuous response vector.
- X
a design matrix (full of integer covariates).
- iter
the total number of mcmc iterations.
- warmup
the number of warmup mcmc iterations.
- seed
the seed for random number generation.
- n
the number of points \(y_0\) for computing \(p(y_0 | y)\). The final grid is conformed by
n
equispaced points fromlb
toub
, see the argumentslb
andub
.- rho
the hyperparameter \(\rho\).
- a
the hyperparameter \(a\).
- b
the hyperparameter \(b\).
- a0
the hyperparameter \(a_0\).
- lambda0
the hyperparameter \(\lambda_0\).
- mu0
the hyperparameter \(\mu_0\).
- b0
the hyperparameter \(b_0\).
- lb
the lower bound of the prediction grid.
- ub
the upper bound of the prediction grid.
- standardize_y
Select
TRUE
to internally standardize the data, fit the model, and present the results in the original scale.